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I. INTRODUCTION

Let X be a compact metric space and C(X) the space of continuous real­
valued functions defined on X. Assume that P and Q are subsets in C(X) and
q(x) > 0 in X for all q E Q. Then we may construct the function family

R = {p/q: pEP, q E Q}.

We suppose now that E(z, x) is a nonnegative function from
(-00, 00) X X into [0, 00) such that IIE(r, . )11 < 00 for any element r E R,
where

IIE(r, . )11 = sup E(r, x)
XEX

(E(r, x) == E(r(x), x».

Our minimax problem then is to find an element ro E R such that

IIE(ro' ·)11 = inf IIE(r, ·)11;
rER

such an '0 (if any) is said to be a minimum to E from R.
In this paper we investigate such a problem and study characterization

and uniqueness of a minimum to E when P and Q are arbitrary convex sets.
Then, as an example, we use these results to deduce the corresponding results
for one-sided simultaneous rational approximation.

* This work has been supported by a grant to Professor C. B. Dunham from the Natural
Sciences and Engineering Research Council of Canada while the author has been at the
University of Western Ontario as a Visiting Research Associate.
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II. CHARACTERIZATION AND UNIQUENESS

Suppose P and Q both are convex sets in C(X). Letting P, Po E P and
q, qo E Q, for t E [0, 1] write

Pt = Po + t(p - Po),

qt = qo + t(q - qo),

rt = Pt/qt·

Our main results require several lemmas.

LEMMA 1. Let f(x) be a convex function. Then

¢(t)-= f(rt)-f(ro) qt
t q

is an increasing function of t in (0, 1].

Proof Since

f(rt) - f(ro) f(rt) - f(ro) rt - ro
t rt - ro

we have

From

it follows that in the case r - ro > «) 0, for t E (0, 1] rt - ro > «) 0 and rt
is an increasing (a decreasing) function. By the convexity of f then
(f(rt) - !(ro))/(rt - ro) is an increasing (a decreasing) function of t in (0, 1]
[1, p. 6]. Thus in any case we can conclude that ¢(t) is an increasing
function of t in (0, 1].

From ¢(t) ~ ¢(l) we obtain the following corollary.



GENERALIZED RATIONAL FUNCTIONS

COROLLARY. Let f(x) be a convex function. Then
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t E (0, 1]. (1)

In order to state the following basic lemma we need to introduce the
notation

X r = {x E X: E(r, x) = IIE(r, . )II}

and to generalize the notion of the directional derivative to be applicable to
our case. To this end for r; = piq;, i = 0, 1,2 denote

if the limit exists. Thus

LEMMA 2. Let P and Q be convex sets in C(X). Suppose that E(z, x) is
convex with respect to z for each x E X. Then for any r, roE R

, . qo(x)
sup E (ro' x, r, ro)-(-) ~ IIE(r, .)11-IIE(ro' .)11
XEX~ q x

'. q(x)
~-suPE(r,x,ro,r)-(-). -(2)

XEX, qo x

Proof By the corollary

E(rl'x)-E(ro'x) qt(x) E( ) ( )
. -() ~ r, x - E r0' x .t q x

,
The left expression of the inequality is increasing with respect to t in (0, 1]
by Lemma 1 and always possesses a limit E'(ro,x;r,ro)qo(x)/q(x) as
t -> 0+. Thus for x E X r o

£'(ro' x; r, ro) qo(x)/q(x) ~ £(r, x) - £(ro' x)

~ IIE(r, .)11-IIE(ro' . )11·

Hence

sup E'(ro' x; r, ro) qo(x)/q(x) ~ IIE(r, .)1I-IIE(ro' . )11 (3)
XEX ro
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which is the left inequality in (2). And the right inequality in (2) follows
from interchanging rand ro in (3).

THEOREM I (Characterization). Let P and Q be convex sets in C(X) and
roE R. Suppose that E(z, x) is convex with respect to z for each x E X and
E(r, x) is upper semicontilJuous with respect to xfor each r E R. Then ro is a
minimum to E from R if and only if

sup E'(ro, x; r, ro) ~ 0,
XEXro

VrER. (4 )

Proof Sufficiency. It directly follows from (2) because q(x) qo(x) > 0
in X.

Necessity. Suppose on the contrary that it is possible to find an
element r E R satisfying that

sup E'(ro, x; r, ro) < O.
XEX ro

The remainder of the proof is devoted to showing how to select t, 0 <
t <. I, so that

First take y E X ro ' We have

E'(ro' y; r, ro) < 0

or

lim (E(rl' y) - E(ro, y»/t < O.
I~O+

So there exists a number ty E (0, I] such that

E(r t ,y) < E(ro, y),
.v

i.e.,

E(rt ,y) < e.
y

(5)

By the upper semicontinuity of E with respect to x we may find a
neighborhood Ny of the point y such that

E(r t , x) < e,
y

(6)



By Lemma 1

GENERALIZED RATIONAL FUNCTIONS 177

E(rl' x) - E(ro, x) . q/(x) /' E(r/y' x) - E(ro, x) . q//x) V (0 1
"::::: , t E , ty •

t q(x) ty q(x)

Hence for t E (0, ty 1

E(rl' x) <(tq//x)/tyq/(x» E(rtv ' x) + (l - tq/y(x)/tyq/(x» E(ro, x).

Since

from (6) it follows that for t E (0, ty] and x E Ny

E(rl' x) < (tq//x)/tyqtCx» e + (1 - tqt,(x)/tyq/(x» e = e.

This gives that

Vt E (0, tv], Vx E Ny. (7)

Next take y E X\X'o' We have E(ro, y) < e. Since by the corollary

lim E(rl' y) <E(ro, y),
/~o+

we can find a positive number ty such that (5) is also valid. The same
argument as above may also give (7).

Now from the open cover {Ny} of the compact metric space X we may
select a finite subcover {Ny, ,... , Ny)' Taking the minimum of the
corresponding numbers tyl ,'''' tyn , denoted by t, then we obtain that 0 < t <1
and

VxEX

Whence

IIE(r/, . )11 < e.

We have reached a contradiction because r/ = ptiq/ E R.

THEOREM 2 (Characterization). Under the assumptions of Theorem 1 if
E possesses a minimum from R, then ro is a minimum to E from R if and
only if

sup E'(r, x; ro, r) < sup E'(ro, x; r, ro),
XEX r XEX~

VrER. (8)
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Proof If ro is a minimum to E from R, i.e.,

then

II E(r, . )11 ~ II E(r0' . )11,

sup E'(r, x; ro' r) ~ 0,
XEX,

VrER,

VrER

by Lemma 2 and (4) is valid by Theorem 1. So (8) follows.
Conversely, let ro satisfy (8). Suppose on the contrary that ro is not a

minimum to E from R but r E R\{r0 I is. Thus by Lemma 2

sup E'(ro' x; r, ro) < 0
XEX,O

and by Theorem 1

This is a contradiction.

sup E'(r, x; ro, r) ~ O.
xeX,

(9)

THEOREM 3 (Uniqueness). Under the assumptions of Theorem 2 the
following statements are equivalent to each other:

(a) IIE(ro" )11 < IIE(r, . )11, Vr E R\{rol;

(b) sUPxex E'(r, x; ro, r) < 0, Vr E R\{rol;
r

(c) sUPxex E'(r, x; ro, r) < sUPxex E'(ro' x; r, ro), Vr E R\{rol.
r ~

Proof (a) ~ (b) By Lemma 2 it directly follows.

(a) ~ (c) Since (a) implies (4) by Theorem 1, (c) follows from (4)
and (b).

(b) ~ (a) and (c) ~ (a) Suppose not and let r E R\{rol be a minimum
to E from R. Then by Theorem 1 inequality (9) is valid and by Lemma 2

sup E'(ro' x; r, ro) <O.
XEX,o

(10)

But (9) contradicts (b), and (9) and (10) together contradict (c).

Remark. The all results of this section remain true if we take R * c R
instead of R, provided that R * satisfies the condition:

t E (0, 1). (11 )
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E(z, x) = ~ Aj Ifj(x) - zl,
j

and let

I' C(X) A 2 ° d \' A· = 1Jj E , j:7 an ~ J '
j

R*= {rER: r(x)~inf{fj(x)}}.
J

This is a one-sided simultaneous rational approximation problem. It is easy
to see that the set R * satisfies condition (II).

Putting r, roE R * we have

E'(ro, x; r, ro) = lim (E(rl' x) - E(ro' x))/t
I~O+

= lim ~ Ako(x) - rt(x))/t
I~O+ j

= (ro(x) - rex)) q(x)/qo(X)'

Thus (4) becomes

sup (ro(x) - rex)) ~ 0,
XEX rO

Similarly, (b) in Theorem 3 becomes

sup (r(x) - rO(x)) <0,
XEX r

Vr E R *.

Vr E R*\jro}.

(12)

(13)

By the remark above, a corollary to Theorem 1 and Theorem 3 follows:

COROLLARY 1. Let P and Q be convex sets in C(X). An element roE R *
is a best approximation to {fj} from R * if and only if (12) is valid.
Meanwhile, if {fj} possesses a best approximation from R *, then roE R * is
the unique best approximation to {fj} from R * if and only if (13) is valid.
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