JOURNAL OF APPROXIMATION THEORY 36, 173-180 (1982)

A Minimax Problem Using Generalized Rational Functions*

YING GUANG SHI

Computing Center, Chinese Academy of Sciences, P. O. Box 2719, Peking, China

Communicated by John R. Rice

Received November 5, 1981

I. INTRODUCTION

Let X be a compact metric space and C(X) the space of continuous realvalued functions defined on X. Assume that P and Q are subsets in C(X) and q(x) > 0 in X for all $q \in Q$. Then we may construct the function family

$$R = \{ p/q \colon p \in P, q \in Q \}.$$

We suppose now that E(z, x) is a nonnegative function from $(-\infty, \infty) \times X$ into $[0, \infty)$ such that $||E(r, \cdot)|| < \infty$ for any element $r \in R$, where

$$||E(r, \cdot)|| = \sup_{x \in X} E(r, x)$$
 $(E(r, x) \equiv E(r(x), x)).$

Our minimax problem then is to find an element $r_0 \in R$ such that

$$||E(r_0, \cdot)|| = \inf_{r \in R} ||E(r, \cdot)||;$$

such an r_0 (if any) is said to be a minimum to E from R.

In this paper we investigate such a problem and study characterization and uniqueness of a minimum to E when P and Q are arbitrary convex sets. Then, as an example, we use these results to deduce the corresponding results for one-sided simultaneous rational approximation.

^{*} This work has been supported by a grant to Professor C. B. Dunham from the Natural Sciences and Engineering Research Council of Canada while the author has been at the University of Western Ontario as a Visiting Research Associate.

YING GUANG SHI

II. CHARACTERIZATION AND UNIQUENESS

Suppose P and Q both are convex sets in C(X). Letting $p, p_0 \in P$ and $q, q_0 \in Q$, for $t \in [0, 1]$ write

$$p_{t} = p_{0} + t(p - p_{0}),$$

$$q_{t} = q_{0} + t(q - q_{0}),$$

$$r_{t} = p_{t}/q_{t}.$$

Our main results require several lemmas.

LEMMA 1. Let f(x) be a convex function. Then

$$\phi(t) \equiv \frac{f(r_t) - f(r_0)}{t} \cdot \frac{q_t}{q}$$

is an increasing function of t in (0, 1].

Proof. Since

$$\frac{f(r_t) - f(r_0)}{t} = \frac{f(r_t) - f(r_0)}{r_t - r_0} \cdot \frac{r_t - r_0}{t}$$
$$= \frac{f(r_t) - f(r_0)}{r_t - r_0} \cdot \frac{q}{q_t} (r - r_0),$$

we have

$$\phi(t) = \frac{f(r_t) - f(r_0)}{r_t - r_0} (r - r_0).$$

From

$$r_t - r_0 = \frac{tq}{q_0 + t(q - q_0)} (r - r_0)$$

it follows that in the case $r - r_0 > (<) 0$, for $t \in (0, 1]$ $r_t - r_0 > (<) 0$ and r_t is an increasing (a decreasing) function. By the convexity of f then $(f(r_t) - f(r_0))/(r_t - r_0)$ is an increasing (a decreasing) function of t in (0, 1] [1, p. 6]. Thus in any case we can conclude that $\phi(t)$ is an increasing function of t in (0, 1].

From $\phi(t) \leq \phi(1)$ we obtain the following corollary.

COROLLARY. Let f(x) be a convex function. Then

$$\frac{f(r_t) - f(r_0)}{t} \cdot \frac{q_t}{q} \leqslant f(r) - f(r_0), \qquad t \in (0, 1].$$
(1)

In order to state the following basic lemma we need to introduce the notation

$$X_r = \{x \in X: E(r, x) = ||E(r, \cdot)||\}$$

and to generalize the notion of the directional derivative to be applicable to our case. To this end for $r_i = p_i/q_i$, i = 0, 1, 2 denote

$$E'(r_0, x; r_1, r_2) = \lim_{t \to 0+} \left(E\left(\frac{p_0 + t(p_1 - p_2)}{q_0 + t(q_1 - q_2)}, x\right) - E(r_0, x) \right) \middle| t$$

if the limit exists. Thus

$$E'(r_0, x; r, r_0) = \lim_{t \to 0+} (E(r_t, x) - E(r_0, x))/t.$$

LEMMA 2. Let P and Q be convex sets in C(X). Suppose that E(z, x) is convex with respect to z for each $x \in X$. Then for any $r, r_0 \in R$

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) \frac{q_0(x)}{q(x)} \leq ||E(r, \cdot)|| - ||E(r_0, \cdot)||$$
$$\leq -\sup_{x \in X_r} E'(r, x; r_0, r) \frac{q(x)}{q_0(x)}.$$
(2)

Proof. By the corollary

$$\frac{E(r_t,x)-E(r_0,x)}{t}\cdot\frac{q_t(x)}{q(x)}\leqslant E(r,x)-E(r_0,x).$$

The left expression of the inequality is increasing with respect to t in (0, 1] by Lemma 1 and always possesses a limit $E'(r_0, x; r, r_0) q_0(x)/q(x)$ as $t \to 0+$. Thus for $x \in X_{r_0}$

$$E'(r_0, x; r, r_0) q_0(x)/q(x) \leq E(r, x) - E(r_0, x)$$
$$\leq ||E(r, \cdot)|| - ||E(r_0, \cdot)||.$$

Hence

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) q_0(x)/q(x) \leq ||E(r, \cdot)|| - ||E(r_0, \cdot)||$$
(3)

which is the left inequality in (2). And the right inequality in (2) follows from interchanging r and r_0 in (3).

THEOREM 1 (Characterization). Let P and Q be convex sets in C(X) and $r_0 \in R$. Suppose that E(z, x) is convex with respect to z for each $x \in X$ and E(r, x) is upper semicontinuous with respect to x for each $r \in R$. Then r_0 is a minimum to E from R if and only if

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) \ge 0, \quad \forall r \in \mathbb{R}.$$
 (4)

Proof. Sufficiency. It directly follows from (2) because $q(x) q_0(x) > 0$ in X.

Necessity. Suppose on the contrary that it is possible to find an element $r \in R$ satisfying that

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) < 0.$$

The remainder of the proof is devoted to showing how to select t, $0 < t \le 1$, so that

$$||E(r_{i}, \cdot)|| < e \equiv ||E(r_{0}, \cdot)||.$$

First take $y \in X_{r_0}$. We have

$$E'(r_0, y; r, r_0) < 0$$

or

$$\lim_{t \to 0^+} (E(r_t, y) - E(r_0, y))/t < 0.$$

So there exists a number $t_y \in (0, 1]$ such that

$$E(r_{t_y}, y) < E(r_0, y),$$

i.e.,

$$E(r_{t_{y}}, y) < e. \tag{5}$$

By the upper semicontinuity of E with respect to x we may find a neighborhood N_y of the point y such that

$$E(r_{t_y}, x) < e, \qquad \forall x \in N_y.$$
(6)

By Lemma 1

$$\frac{E(r_t, x) - E(r_0, x)}{t} \cdot \frac{q_t(x)}{q(x)} \leqslant \frac{E(r_{t_y}, x) - E(r_0, x)}{t_y} \cdot \frac{q_{t_y}(x)}{q(x)}, \quad \forall t \in (0, t_y].$$

Hence for $t \in (0, t_y]$

$$E(r_t, x) \leq (tq_{t_y}(x)/t_yq_t(x)) E(r_{t_y}, x) + (1 - tq_{t_y}(x)/t_yq_t(x)) E(r_0, x).$$

Since

$$tq_{t_y}/t_yq_t = (tq_0 + tt_y(q - q_0))/(t_yq_0 + tt_y(q - q_0)) \leq 1,$$

from (6) it follows that for $t \in (0, t_v]$ and $x \in N_v$

$$E(r_t, x) < (tq_{t_y}(x)/t_yq_t(x)) e + (1 - tq_{t_y}(x)/t_yq_t(x)) e = e.$$

This gives that

$$E(r_t, x) < e, \qquad \forall t \in (0, t_y], \quad \forall x \in N_y.$$
(7)

Next take $y \in X \setminus X_{r_0}$. We have $E(r_0, y) < e$. Since by the corollary

$$\lim_{t\to 0+} E(r_t, y) \leqslant E(r_0, y),$$

we can find a positive number t_y such that (5) is also valid. The same argument as above may also give (7).

Now from the open cover $\{N_y\}$ of the compact metric space X we may select a finite subcover $\{N_{y_1},...,N_{y_n}\}$. Taking the minimum of the corresponding numbers $t_{y_1},...,t_{y_n}$, denoted by t, then we obtain that $0 < t \le 1$ and

$$E(r_t, x) < e, \qquad \forall x \in X$$

Whence

$$\|E(r_t, \cdot)\| < e.$$

We have reached a contradiction because $r_t = p_t/q_t \in R$.

THEOREM 2 (Characterization). Under the assumptions of Theorem 1 if E possesses a minimum from R, then r_0 is a minimum to E from R if and only if

$$\sup_{x \in X_r} E'(r, x; r_0, r) \leqslant \sup_{x \in X_{r_0}} E'(r_0, x; r, r_0), \quad \forall r \in \mathbb{R}.$$
 (8)

Proof. If r_0 is a minimum to E from R, i.e.,

$$||E(r, \cdot)|| \ge ||E(r_0, \cdot)||, \qquad \forall r \in R,$$

then

$$\sup_{x \in X_r} E'(r, x; r_0, r) \leq 0, \qquad \forall r \in R$$

by Lemma 2 and (4) is valid by Theorem 1. So (8) follows.

Conversely, let r_0 satisfy (8). Suppose on the contrary that r_0 is not a minimum to E from R but $r \in R \setminus \{r_0\}$ is. Thus by Lemma 2

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) < 0$$

and by Theorem 1

$$\sup_{x \in X_r} E'(r, x; r_0, r) \ge 0.$$
(9)

This is a contradiction.

THEOREM 3 (Uniqueness). Under the assumptions of Theorem 2 the following statements are equivalent to each other:

(a)
$$||E(r_0, \cdot)|| < ||E(r, \cdot)||, \forall r \in \mathbb{R} \setminus \{r_0\};$$

- (b) $\sup_{x \in X_r} E'(r, x; r_0, r) < 0, \forall r \in R \setminus \{r_0\};$
- (c) $\sup_{x \in X_r} E'(r, x; r_0, r) < \sup_{x \in X_{r_0}} E'(r_0, x; r, r_0), \forall r \in \mathbb{R} \setminus \{r_0\}.$

Proof. (a) \Rightarrow (b) By Lemma 2 it directly follows.

(a) \Rightarrow (c) Since (a) implies (4) by Theorem 1, (c) follows from (4) and (b).

(b) \Rightarrow (a) and (c) \Rightarrow (a) Suppose not and let $r \in R \setminus \{r_0\}$ be a minimum to E from R. Then by Theorem 1 inequality (9) is valid and by Lemma 2

$$\sup_{x \in X_{r_0}} E'(r_0, x; r, r_0) \leq 0.$$
 (10)

But (9) contradicts (b), and (9) and (10) together contradict (c).

Remark. The all results of this section remain true if we take $R^* \subset R$ instead of R, provided that R^* satisfies the condition:

$$r, r_0 \in \mathbb{R}^* \Rightarrow r_t \in \mathbb{R}^*, \qquad t \in (0, 1). \tag{11}$$

178

III. APPLICATION

Let

$$E(z, x) = \sum_{j} \lambda_j |f_j(x) - z|, \quad f_j \in C(X), \quad \lambda_j \ge 0 \quad \text{and} \quad \sum_{j} \lambda_j = 1,$$

and let

$$R^* = \{r \in R \colon r(x) \leq \inf_j \{f_j(x)\}\}.$$

This is a one-sided simultaneous rational approximation problem. It is easy to see that the set R^* satisfies condition (11).

Putting $r, r_0 \in R^*$ we have

$$E'(r_0, x; r, r_0) = \lim_{t \to 0+} (E(r_t, x) - E(r_0, x))/t$$

= $\lim_{t \to 0+} \sum_j \lambda_j (|f_j(x) - r_t(x)| - |f_j(x) - r_0(x)|)/t$
= $\lim_{t \to 0+} \sum_j \lambda_j (r_0(x) - r_t(x))/t$
= $(r_0(x) - r(x)) q(x)/q_0(x).$

Thus (4) becomes

$$\sup_{x \in X_{r_0}} (r_0(x) - r(x)) \ge 0, \quad \forall r \in \mathbb{R}^*.$$
(12)

Similarly, (b) in Theorem 3 becomes

$$\sup_{x \in X_r} (r(x) - r_0(x)) < 0, \qquad \forall r \in \mathbb{R}^* \setminus \{r_0\}.$$
(13)

By the remark above, a corollary to Theorem 1 and Theorem 3 follows:

COROLLARY 1. Let P and Q be convex sets in C(X). An element $r_0 \in R^*$ is a best approximation to $\{f_j\}$ from R^* if and only if (12) is valid. Meanwhile, if $\{f_j\}$ possesses a best approximation from R^* , then $r_0 \in R^*$ is the unique best approximation to $\{f_j\}$ from R^* if and only if (13) is valid.

ACKNOWLEDGMENTS

I am indebted to Professor C. B. Dunham for his guidance and help and to the referee for his useful suggestion.

YING GUANG SHI

Reference

1. A. W. ROBERTS AND D. E. VARBERG, "Convex Functions," Academic Press, New York/ London, 1973.