A Minimax Problem Using Generalized Rational Functions*

Ying Guang Shi
Computing Center, Chinese Academy of Sciences, P. O. Box 2719, Peking, China
Communicated by John R. Rice

Reccived November 5, 1981

I. Introduction

Let X be a compact metric space and $C(X)$ the space of continuous realvalued functions defined on X. Assume that P and Q are subsets in $C(X)$ and $q(x)>0$ in X for all $q \in Q$. Then we may construct the function family

$$
R=\{p / q: p \in P, q \in Q\} .
$$

We suppose now that $E(z, x)$ is a nonnegative function from $(-\infty, \infty) \times X$ into $[0, \infty)$ such that $\|E(r, \cdot)\|<\infty$ for any element $r \in R$, where

$$
\|E(r, \cdot)\|=\sup _{x \in X} E(r, x) \quad(E(r, x) \equiv E(r(x), x))
$$

Our minimax problem then is to find an element $r_{0} \in R$ such that

$$
\left\|E\left(r_{0}, \cdot\right)\right\|=\inf _{r \in R}\|E(r, \cdot)\|
$$

such an r_{0} (if any) is said to be a minimum to E from R.
In this paper we investigate such a problem and study characterization and uniqueness of a minimum to E when P and Q are arbitrary convex sets. Then, as an example, we use these results to deduce the corresponding results for one-sided simultaneous rational approximation.

[^0]
II. Characterization and Uniqueness

Suppose P and Q both are convex sets in $C(X)$. Letting $p, p_{0} \in P$ and $q, q_{0} \in Q$, for $t \in[0,1]$ write

$$
\begin{aligned}
p_{t} & =p_{0}+t\left(p-p_{0}\right), \\
q_{t} & =q_{0}+t\left(q-q_{0}\right), \\
r_{t} & =p_{t} / q_{t} .
\end{aligned}
$$

Our main results require several lemmas.

Lemma 1. Let $f(x)$ be a convex function. Then

$$
\phi(t) \equiv \frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{t} \cdot \frac{q_{t}}{q}
$$

is an increasing function of t in $(0,1]$.
Proof. Since

$$
\begin{aligned}
\frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{t} & =\frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{r_{t}-r_{0}} \cdot \frac{r_{t}-r_{0}}{t} \\
& =\frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{r_{t}-r_{0}} \cdot \frac{q}{q_{t}}\left(r-r_{0}\right)
\end{aligned}
$$

we have

$$
\phi(t)=\frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{r_{t}-r_{0}}\left(r-r_{0}\right) .
$$

From

$$
r_{t}-r_{0}=\frac{t q}{q_{0}+t\left(q-q_{0}\right)}\left(r-r_{0}\right)
$$

it follows that in the case $r-r_{0}>(<) 0$, for $t \in(0,1] r_{t}-r_{0}>(<) 0$ and r_{t} is an increasing (a decreasing) function. By the convexity of f then $\left(f\left(r_{t}\right)-f\left(r_{0}\right)\right) /\left(r_{t}-r_{0}\right)$ is an increasing (a decreasing) function of t in $(0,1]$ [1, p. 6]. Thus in any case we can conclude that $\phi(t)$ is an increasing function of t in $(0,1]$.

From $\phi(t) \leqslant \phi(1)$ we obtain the following corollary.

Corollary. Let $f(x)$ be a convex function. Then

$$
\begin{equation*}
\frac{f\left(r_{t}\right)-f\left(r_{0}\right)}{t} \cdot \frac{q_{t}}{q} \leqslant f(r)-f\left(r_{0}\right), \quad t \in(0,1] . \tag{1}
\end{equation*}
$$

In order to state the following basic lemma we need to introduce the notation

$$
X_{r}=\{x \in X: E(r, x)=\|E(r, \cdot)\|\}
$$

and to generalize the notion of the directional derivative to be applicable to our case. To this end for $r_{i}=p_{i} / q_{i}, i=0,1,2$ denote

$$
E^{\prime}\left(r_{0}, x ; r_{1}, r_{2}\right)=\lim _{t \rightarrow 0+}\left(E\left(\frac{p_{0}+t\left(p_{1}-p_{2}\right)}{q_{0}+t\left(q_{1}-q_{2}\right)}, x\right)-E\left(r_{0}, x\right)\right) / t
$$

if the limit exists. Thus

$$
E^{\prime}\left(r_{0}, x ; r, r_{0}\right)=\lim _{t \rightarrow 0+}\left(E\left(r_{t}, x\right)-E\left(r_{0}, x\right)\right) / t
$$

Lemma 2. Let P and Q be convex sets in $C(X)$. Suppose that $E(z, x)$ is convex with respect to z for each $x \in X$. Then for any $r, r_{0} \in R$

$$
\begin{align*}
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right) \frac{q_{0}(x)}{q(x)} & \leqslant\|E(r, \cdot)\|-\left\|E\left(r_{0}, \cdot\right)\right\| \\
& \leqslant-\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right) \frac{q(x)}{q_{0}(x)} . \tag{2}
\end{align*}
$$

Proof. By the corollary

$$
\frac{E\left(r_{t}, x\right)-E\left(r_{0}, x\right)}{t} \cdot \frac{q_{t}(x)}{q(x)} \leqslant E(r, x)-E\left(r_{0}, x\right) .
$$

The left expression of the inequality is increasing with respect to t in $(0,1]$ by Lemma 1 and always possesses a limit $E^{\prime}\left(r_{0}, x ; r, r_{0}\right) q_{0}(x) / q(x)$ as $t \rightarrow 0+$. Thus for $x \in X_{r_{0}}$

$$
\begin{aligned}
E^{\prime}\left(r_{0}, x ; r, r_{0}\right) q_{0}(x) / q(x) & \leqslant E(r, x)-E\left(r_{0}, x\right) \\
& \leqslant\|E(r, \cdot)\|-\left\|E\left(r_{0}, \cdot\right)\right\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right) q_{0}(x) / q(x) \leqslant\|E(r, \cdot)\|-\left\|E\left(r_{0}, \cdot\right)\right\| \tag{3}
\end{equation*}
$$

which is the left inequality in (2). And the right inequality in (2) follows from interchanging r and r_{0} in (3).

TheOrem 1 (Characterization). Let P and Q be convex sets in $C(X)$ and $r_{0} \in R$. Suppose that $E(z, x)$ is convex with respect to z for each $x \in X$ and $E(r, x)$ is upper semicontinuous with respect to x for each $r \in R$. Then r_{0} is a minimum to E from R if and only if

$$
\begin{equation*}
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right) \geqslant 0, \quad \forall r \in R \tag{4}
\end{equation*}
$$

Proof. Sufficiency. It directly follows from (2) because $q(x) q_{0}(x)>0$ in X.

Necessity. Suppose on the contrary that it is possible to find an element $r \in R$ satisfying that

$$
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right)<0
$$

The remainder of the proof is devoted to showing how to select $t, 0<$ $t \leqslant 1$, so that

$$
\left\|E\left(r_{t}, \cdot\right)\right\|<e \equiv\left\|E\left(r_{0}, \cdot\right)\right\| .
$$

First take $y \in X_{r_{0}}$. We have

$$
E^{\prime}\left(r_{0}, y ; r, r_{0}\right)<0
$$

or

$$
\lim _{t \rightarrow 0+}\left(E\left(r_{t}, y\right)-E\left(r_{0}, y\right)\right) / t<0
$$

So there exists a number $t_{y} \in(0,1]$ such that

$$
E\left(r_{t}, y\right)<E\left(r_{0}, y\right)
$$

i.e.,

$$
\begin{equation*}
E\left(r_{t,}, y\right)<e \tag{5}
\end{equation*}
$$

By the upper semicontinuity of E with respect to x we may find a neighborhood N_{y} of the point y such that

$$
\begin{equation*}
E\left(r_{t y}, x\right)<e, \quad \forall x \in N_{y} \tag{6}
\end{equation*}
$$

By Lemma 1

$$
\frac{E\left(r_{t}, x\right)-E\left(r_{0}, x\right)}{t} \cdot \frac{q_{t}(x)}{q(x)} \leqslant \frac{E\left(r_{t_{y}}, x\right)-E\left(r_{0}, x\right)}{t_{y}} \cdot \frac{q_{t_{v}}(x)}{q(x)}, \quad \forall t \in\left(0, t_{y}\right]
$$

Hence for $t \in\left(0, t_{y}\right]$

$$
E\left(r_{t}, x\right) \leqslant\left(t q_{t_{y}}(x) / t_{y} q_{t}(x)\right) E\left(r_{t_{y}}, x\right)+\left(1-t q_{t_{y}}(x) / t_{y} q_{t}(x)\right) E\left(r_{0}, x\right) .
$$

Since

$$
t q_{t_{y}} / t_{y} q_{t}=\left(t q_{0}+t t_{y}\left(q-q_{0}\right)\right) /\left(t_{y} q_{0}+t t_{y}\left(q-q_{0}\right)\right) \leqslant 1
$$

from (6) it follows that for $t \in\left(0, t_{y}\right)$ and $x \in N_{y}$

$$
E\left(r_{t}, x\right)<\left(t q_{t_{y}}(x) / t_{y} q_{t}(x)\right) e+\left(1-t q_{t_{y}}(x) / t_{y} q_{t}(x)\right) e=e
$$

This gives that

$$
\begin{equation*}
E\left(r_{t}, x\right)<e, \quad \forall t \in\left(0, t_{y}\right], \quad \forall x \in N_{y} \tag{7}
\end{equation*}
$$

Next take $y \in X \backslash X_{r_{0}}$. We have $E\left(r_{0}, y\right)<e$. Since by the corollary

$$
\lim _{t \rightarrow 0+} E\left(r_{t}, y\right) \leqslant E\left(r_{0}, y\right)
$$

we can find a positive number t_{y} such that (5) is also valid. The same argument as above may also give (7).

Now from the open cover $\left\{N_{y}\right\}$ of the compact metric space X we may select a finite subcover $\left\{N_{y_{1}}, \ldots, N_{y_{n}}\right\}$. Taking the minimum of the corresponding numbers $t_{y_{1}}, \ldots, t_{y_{n}}$, denoted by t, then we obtain that $0<t \leqslant 1$ and

$$
E\left(r_{t}, x\right)<e, \quad \forall x \in X
$$

Whence

$$
\left\|E\left(r_{t}, \cdot\right)\right\|<e
$$

We have reached a contradiction because $r_{t}=p_{t} / q_{t} \in R$.

Theorem 2 (Characterization). Under the assumptions of Theorem 1 if E possesses a minimum from R, then r_{0} is a minimum to E from R if and only if

$$
\begin{equation*}
\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right) \leqslant \sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right), \quad \forall r \in R . \tag{8}
\end{equation*}
$$

Proof. If r_{0} is a minimum to E from R, i.e.,

$$
\|E(r, \cdot)\| \geqslant\left\|E\left(r_{0}, \cdot\right)\right\|, \quad \forall r \in R
$$

then

$$
\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right) \leqslant 0, \quad \forall r \in R
$$

by Lemma 2 and (4) is valid by Theorem 1. So (8) follows.
Conversely, let r_{0} satisfy (8). Suppose on the contrary that r_{0} is not a minimum to E from R but $r \in R \backslash\left\{r_{0}\right\}$ is. Thus by Lemma 2

$$
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right)<0
$$

and by Theorem 1

$$
\begin{equation*}
\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right) \geqslant 0 . \tag{9}
\end{equation*}
$$

This is a contradiction.

Theorem 3 (Uniqueness). Under the assumptions of Theorem 2 the following statements are equivalent to each other:
(a) $\left\|E\left(r_{0}, \cdot\right)\right\|<\|E(r, \cdot)\|, \forall r \in R \backslash\left\{r_{0}\right\} ;$
(b) $\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right)<0, \forall r \in R \backslash\left\{r_{0}\right\}$;
(c) $\sup _{x \in X_{r}} E^{\prime}\left(r, x ; r_{0}, r\right)<\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right), \forall r \in R \backslash\left\{r_{0}\right\}$.

Proof. (a) \Rightarrow (b) By Lemma 2 it directly follows.
(a) \Rightarrow (c) Since (a) implies (4) by Theorem 1, (c) follows from (4) and (b).
(b) \Rightarrow (a) and (c) \Rightarrow (a) Suppose not and let $r \in R \backslash\left\{r_{0}\right\}$ be a minimum to E from R. Then by Theorem 1 inequality (9) is valid and by Lemma 2

$$
\begin{equation*}
\sup _{x \in X_{r_{0}}} E^{\prime}\left(r_{0}, x ; r, r_{0}\right) \leqslant 0 \tag{10}
\end{equation*}
$$

But (9) contradicts (b), and (9) and (10) together contradict (c).
Remark. The all results of this section remain true if we take $R^{*} \subset R$ instead of R, provided that R^{*} satisfies the condition:

$$
\begin{equation*}
r, r_{0} \in R^{*} \Rightarrow r_{t} \in R^{*}, \quad t \in(0,1) \tag{11}
\end{equation*}
$$

III. Application

Let

$$
E(z, x)=\searrow_{j} \lambda_{j}\left|f_{j}(x)-z\right|, \quad f_{j} \in C(X), \quad \lambda_{j} \geqslant 0 \quad \text { and } \quad \bigsqcup_{j} \lambda_{j}=1,
$$

and let

$$
R^{*}=\left\{r \in R: r(x) \leqslant \inf _{j}\left\{f_{j}(x)\right\}\right\}
$$

This is a one-sided simultaneous rational approximation problem. It is easy to see that the set R^{*} satisfies condition (11).

Putting $r, r_{0} \in R^{*}$ we have

$$
\begin{aligned}
E^{\prime}\left(r_{0}, x ; r, r_{0}\right) & =\lim _{t \rightarrow 0+}\left(E\left(r_{t}, x\right)-E\left(r_{0}, x\right)\right) / t \\
& =\lim _{t \rightarrow 0+} \sum_{j} \lambda_{j}\left(\left|f_{j}(x)-r_{t}(x)\right|-\left|f_{j}(x)-r_{0}(x)\right|\right) / t \\
& =\lim _{t \rightarrow 0+} \sum_{j} \lambda_{j}\left(r_{0}(x)-r_{t}(x)\right) / t \\
& =\left(r_{0}(x)-r(x)\right) q(x) / q_{0}(x)
\end{aligned}
$$

Thus (4) becomes

$$
\begin{equation*}
\sup _{x \in X_{r_{0}}}\left(r_{0}(x)-r(x)\right) \geqslant 0, \quad \forall r \in R^{*} \tag{12}
\end{equation*}
$$

Similarly, (b) in Theorem 3 becomes

$$
\begin{equation*}
\sup _{x \in X_{r}}\left(r(x)-r_{0}(x)\right)<0, \quad \forall r \in R^{*} \backslash\left\{r_{0}\right\} \tag{13}
\end{equation*}
$$

By the remark above, a corollary to Theorem 1 and Theorem 3 follows:
Corollary 1. Let P and Q be convex sets in $C(X)$. An element $r_{0} \in R^{*}$ is a best approximation to $\left\{f_{j}\right\}$ from R^{*} if and only if (12) is valid. Meanwhile, if $\left\{f_{j}\right\}$ possesses a best approximation from R^{*}, then $r_{0} \in R^{*}$ is the unique best approximation to $\left\{f_{j}\right\}$ from R^{*} if and only if (13) is valid.

Acknowledgments

[^1]
Reference

1. A. W. Roberts and D. E. Varberg, "Convex Functions," Academic Press, New York/ London, 1973.

[^0]: * This work has been supported by a grant to Professor C. B. Dunham from the Natural Sciences and Engineering Research Council of Canada while the author has been at the University of Western Ontario as a Visiting Research Associate.

[^1]: I am indebted to Professor C. B. Dunham for his guidance and help and to the referee for his useful suggestion.

